Skip to content
🤔prompts chat🧠
🔍
question:What is Quantum Entanglement and what does this Quantum State represent?

answer:Quantum entanglement is a fundamental phenomenon in quantum mechanics where two or more particles become interconnected in such a way that their properties, such as spin, momentum, or energy, are correlated with each other, regardless of the distance between them. This means that measuring the state of one particle instantly affects the state of the other entangled particles, even if they are separated by large distances. In an entangled state, the particles are not independent; their properties are linked in a way that cannot be explained by classical physics. When a measurement is made on one particle, the state of the other entangled particles is immediately determined, regardless of the distance between them. This effect happens even if the particles are separated by billions of kilometers, which is why entanglement is often referred to as spooky action at a distance. Quantum entanglement represents a unique quantum state where the particles are in a superposition of correlated states. This means that the particles are not in a definite state until they are measured or observed. Entanglement is a non-local phenomenon, meaning it transcends space and time, allowing for instantaneous communication and correlation between particles. Entanglement is a key feature of quantum mechanics and has been experimentally demonstrated in various systems, including photons, electrons, atoms, and even large-scale objects like superconducting circuits. It is a crucial resource for quantum computing, quantum cryptography, and quantum communication, as it enables the creation of secure quantum channels and the manipulation of quantum information. The implications of entanglement are profound, challenging our classical understanding of space, time, and causality. It has sparked intense debate and research in the fields of quantum foundations, quantum information, and condensed matter physics, and continues to be a subject of fascination and exploration in modern physics.

question:Please add punctuation to this: The only option that I see is that they install the software register an account enter the promo code for the game get the game linked to their gaming account and uninstall GeForce Experience afterwards

answer:The only option that I see is that they first install the software, then register an account, enter the promo code for the game, get the game linked to their gaming account, and finally uninstall GeForce Experience afterwards.

question:# language: Python import torch.nn as nn from..builder import BACKBONES from.base_backbone import BaseBackbone import numbers import collections import logging import functools import torch from torch import nn from torch.nn import functional as F from mmcls.models.backbones.transformer import Transformer checkpoint_kwparams = None def resize(input, size=None, scale_factor=None, mode='nearest', align_corners=None): return F.interpolate(input, size, scale_factor, mode, align_corners) class InvertedResidualChannels(nn.Module): MobiletNetV2 building block. def __init__(self, inp, oup, stride, channels, kernel_sizes, expand, active_fn=None, batch_norm_kwargs=None): super(InvertedResidualChannels, self).__init__() # assert stride in [1, 2] assert len(channels) == len(kernel_sizes) self.input_dim = inp self.output_dim = oup self.expand = expand self.stride = stride self.kernel_sizes = kernel_sizes self.channels = channels self.use_res_connect = self.stride == 1 and inp == oup self.batch_norm_kwargs = batch_norm_kwargs self.active_fn = active_fn self.ops, self.pw_bn = self._build(channels, kernel_sizes, expand) group = [x for x in range(1, self.input_dim + 1) if self.input_dim % x == 0 and self.output_dim % x == 0][-1] self.residual = nn.Conv2d(self.input_dim, self.output_dim, kernel_size=1, stride=self.stride, padding=0, groups=group, bias=False) def _build(self, hidden_dims, kernel_sizes, expand): _batch_norm_kwargs = self.batch_norm_kwargs if self.batch_norm_kwargs is not None else {} narrow_start = 0 ops = nn.ModuleList() for k, hidden_dim in zip(kernel_sizes, hidden_dims): layers = [] if expand: # pw layers.append( ConvBNReLU(self.input_dim, hidden_dim, kernel_size=1, batch_norm_kwargs=_batch_norm_kwargs, active_fn=self.active_fn)) else: if hidden_dim!= self.input_dim: raise RuntimeError('uncomment this for search_first model') logging.warning( 'uncomment this for previous trained search_first model') # layers.append(Narrow(1, narrow_start, hidden_dim)) narrow_start += hidden_dim layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, kernel_size=k, stride=self.stride, groups=hidden_dim, batch_norm_kwargs=_batch_norm_kwargs, active_fn=self.active_fn), # pw-linear nn.Conv2d(hidden_dim, self.output_dim, 1, 1, 0, bias=False), ]) ops.append(nn.Sequential(*layers)) pw_bn = None if len(ops)!= 0: pw_bn = nn.BatchNorm2d(self.output_dim, **_batch_norm_kwargs) if not expand and narrow_start!= self.input_dim: raise ValueError('Part of input are not used') return ops, pw_bn def forward(self, x): # logging.warning( if len(self.ops) == 0: if not self.use_res_connect: return self.residual(x) else: return x tmp = sum([op(x) for op in self.ops]) tmp = self.pw_bn(tmp) if self.use_res_connect: return x + tmp else: return self.residual(x) + tmp return tmp def __repr__(self): return ('{}({}, {}, channels={}, kernel_sizes={}, expand={},' 'stride={})').format(self._get_name(), self.input_dim, self.output_dim, self.channels, self.kernel_sizes, self.expand, self.stride) class InvertedResidual(InvertedResidualChannels): def __init__(self, inp, oup, stride, expand_ratio, kernel_sizes, active_fn=None, batch_norm_kwargs=None, **kwargs): def _expand_ratio_to_hiddens(expand_ratio): if isinstance(expand_ratio, list): assert len(expand_ratio) == len(kernel_sizes) expand = True elif isinstance(expand_ratio, numbers.Number): expand = expand_ratio!= 1 expand_ratio = [expand_ratio for _ in kernel_sizes] else: raise ValueError( 'Unknown expand_ratio type: {}'.format(expand_ratio)) hidden_dims = [int(round(inp * e)) for e in expand_ratio] return hidden_dims, expand hidden_dims, expand = _expand_ratio_to_hiddens(expand_ratio) if checkpoint_kwparams: assert oup == checkpoint_kwparams[0][0] print('loading: {} -> {}, {} -> {}'.format( hidden_dims, checkpoint_kwparams[0][4], kernel_sizes, checkpoint_kwparams[0][3])) hidden_dims = checkpoint_kwparams[0][4] kernel_sizes = checkpoint_kwparams[0][3] checkpoint_kwparams.pop(0) super(InvertedResidual, self).__init__(inp, oup, stride, hidden_dims, kernel_sizes, expand, active_fn=active_fn, batch_norm_kwargs=batch_norm_kwargs) self.expand_ratio = expand_ratio class Identity(nn.Module): Module proxy for null op. def forward(self, x): return x def get_active_fn(name): Select activation function. active_fn = { 'nn.ReLU6': functools.partial(nn.ReLU6, inplace=True), 'nn.ReLU': functools.partial(nn.ReLU, inplace=True), }[name] return active_fn def _make_divisible(v, divisor, min_value=None): Make channels divisible to divisor. This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def conv3x3(in_planes, out_planes, stride=1, dilation=1): 3x3 convolution with padding. return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False) class ConvBNReLU(nn.Sequential): Convolution-BatchNormalization-ActivateFn. def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, active_fn=None, batch_norm_kwargs=None, dilation=1, padding=None, **kwargs): if batch_norm_kwargs is None: batch_norm_kwargs = {} if not padding: padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, dilation=dilation, groups=groups, bias=False), nn.BatchNorm2d(out_planes, **batch_norm_kwargs), active_fn() if active_fn is not None else Identity()) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, kernel_size=3, active_fn=None, batch_norm_kwargs=None, expand_ratio=None, kernel_sizes=None ): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = active_fn() self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = None self.stride = stride if self.stride!= 1 or inplanes!= planes: self.downsample = nn.Sequential( nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes), ) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def get_block_wrapper(block_str): Wrapper for MobileNetV2 block. Use `expand_ratio` instead of manually specified channels number. if block_str == 'InvertedResidualChannels': return InvertedResidual elif block_str == 'ConvBNReLU': return ConvBNReLU elif block_str == 'BasicBlock': return BasicBlock else: raise ValueError('Unknown type of blocks.') class ParallelModule(nn.Module): def __init__(self, num_branches=2, block=get_block_wrapper('InvertedResidualChannels'), num_blocks=[2, 2], num_channels=[32, 32], expand_ratio=6, kernel_sizes=[3, 5, 7], batch_norm_kwargs=None, active_fn=get_active_fn('nn.ReLU6')): super(ParallelModule, self).__init__() self.num_branches = num_branches self.active_fn = active_fn self.batch_norm_kwargs = batch_norm_kwargs self.expand_ratio = expand_ratio self.kernel_sizes = kernel_sizes self._check_branches( num_branches, num_blocks, num_channels) self.branches = self._make_branches( num_branches, block, num_blocks, num_channels) def _check_branches(self, num_branches, num_blocks, num_channels): if num_branches!= len(num_blocks): error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( num_branches, len(num_blocks)) logging.error(error_msg) raise ValueError(error_msg) if num_branches!= len(num_channels): error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( num_branches, len(num_channels)) logging.error(error_msg) raise ValueError(error_msg) def _make_one_branch(self, branch_index, block, num_blocks, num_channels): layers = [] for i in range(0, num_blocks[branch_index]): layers.append( block( num_channels[branch_index], num_channels[branch_index], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=1, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.active_fn)) return nn.Sequential(*layers) def _make_branches(self, num_branches, block, num_blocks, num_channels): branches = [] for i in range(num_branches): branches.append( self._make_one_branch(i, block, num_blocks, num_channels)) return nn.ModuleList(branches) def forward(self, x): for i in range(self.num_branches): x[i] = self.branches[i](x[i]) return x class FuseModule(nn.Module): ''' Consistent with HRNET: 1. self.use_hr_format, eg: fuse 3 branches, and then add 4th branch from 3rd branch. (default fuse 4 branches) 2. use_hr_format, if the channels are the same and stride==1, use None rather than fuse. (default, always fuse) and use convbnrelu, and kernel_size=1 when upsample. also control the relu here (last layer no relu) 3. self.in_channels_large_stride, use 16->16->64 instead of 16->32->64 for large stride. (default, True) 4. The only difference in self.use_hr_format when adding a branch: is we use add 4th branch from 3rd branch, add 5th branch from 4rd branch hrnet use add 4th branch from 3rd branch, add 5th branch from 3rd branch (2 conv layers) actually only affect 1->2 stage can be hard coded: self.use_hr_format = self.use_hr_format and not(out_branches == 2 and in_branches == 1) 5. hrnet have a fuse layer at the end, we remove it ''' def __init__(self, in_branches=1, out_branches=2, block=get_block_wrapper('InvertedResidualChannels'), in_channels=[16], out_channels=[16, 32], expand_ratio=6, kernel_sizes=[3, 5, 7], batch_norm_kwargs=None, active_fn=get_active_fn('nn.ReLU6'), use_hr_format=False, only_fuse_neighbor=True, directly_downsample=True): super(FuseModule, self).__init__() self.out_branches = out_branches self.in_branches = in_branches self.active_fn = active_fn self.batch_norm_kwargs = batch_norm_kwargs self.expand_ratio = expand_ratio self.kernel_sizes = kernel_sizes self.only_fuse_neighbor = only_fuse_neighbor if only_fuse_neighbor: self.use_hr_format = out_branches > in_branches # w/o self, are two different flags. (see 1.) else: self.use_hr_format = out_branches > in_branches and self.relu = functools.partial(nn.ReLU, inplace=False) if use_hr_format: block = ConvBNReLU fuse_layers = [] for i in range(out_branches if not self.use_hr_format else in_branches): fuse_layer = [] for j in range(in_branches): if only_fuse_neighbor: if j < i - 1 or j > i + 1: fuse_layer.append(None) continue if j > i: fuse_layer.append(nn.Sequential( block( in_channels[j], out_channels[i], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=1, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu if not use_hr_format else None, kernel_size=1 # for hr format ), nn.Upsample(scale_factor=2 ** (j - i), mode='nearest'))) elif j == i: if use_hr_format and in_channels[j] == out_channels[i]: fuse_layer.append(None) else: fuse_layer.append( block( in_channels[j], out_channels[i], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=1, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu if not use_hr_format else None, kernel_size=3 # for hr format )) else: downsamples = [] if directly_downsample: downsamples.append( block( in_channels[j], out_channels[i], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=2 ** (i - j), batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu if not use_hr_format else None, kernel_size=3 # for hr format )) else: for k in range(i - j): if self.in_channels_large_stride: if k == i - j - 1: downsamples.append( block( in_channels[j], out_channels[i], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=2, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu if not use_hr_format else None, kernel_size=3 # for hr format )) else: downsamples.append( block( in_channels[j], in_channels[j], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=2, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu, kernel_size=3 # for hr format )) else: if k == 0: downsamples.append( block( in_channels[j], out_channels[j + 1], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=2, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu if not (use_hr_format and i == j + 1) else None, kernel_size=3 # for hr format )) elif k == i - j - 1: downsamples.append( block( out_channels[j + k], out_channels[i], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=2, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu if not use_hr_format else None, kernel_size=3 # for hr format )) else: downsamples.append( block( out_channels[j + k], out_channels[j + k + 1], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=2, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu, kernel_size=3 # for hr format )) fuse_layer.append(nn.Sequential(*downsamples)) fuse_layers.append(nn.ModuleList(fuse_layer)) if self.use_hr_format: for branch in range(in_branches, out_branches): fuse_layers.append(nn.ModuleList([block( out_channels[branch - 1], out_channels[branch], expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=2, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.relu, kernel_size=3 # for hr format )])) self.fuse_layers = nn.ModuleList(fuse_layers) def forward(self, x): x_fuse = [] if not self.only_fuse_neighbor: for i in range(len(self.fuse_layers) if not self.use_hr_format else self.in_branches): y = self.fuse_layers[i][0](x[0]) if self.fuse_layers[i][0] else x[0] # hr_format, None for j in range(1, self.in_branches): if self.fuse_layers[i][j]: y = y + self.fuse_layers[i][j](x[j]) else: # hr_format, None y = y + x[j] x_fuse.append(self.relu(y)) # TODO(Mingyu): Use ReLU? if self.use_hr_format: for branch in range(self.in_branches, self.out_branches): x_fuse.append(self.fuse_layers[branch][0](x_fuse[branch - 1])) else: for i in range(len(self.fuse_layers) if not self.use_hr_format else self.in_branches): flag = 1 for j in range(i-1, i+2): if 0 <= j < self.in_branches: if flag: y = self.fuse_layers[i][j](x[j]) if self.fuse_layers[i][j] else x[j] # hr_format, None flag = 0 else: if self.fuse_layers[i][j]: y = y + self.fuse_layers[i][j](x[j]) else: # hr_format, None y = y + x[j] x_fuse.append(self.relu()(y)) # TODO(Mingyu): Use ReLU? if self.use_hr_format: for branch in range(self.in_branches, self.out_branches): x_fuse.append(self.fuse_layers[branch][0](x_fuse[branch - 1])) return x_fuse @BACKBONES.register_module() class HighResolutionNet(nn.Module): def __init__(self, num_classes=1000, input_size=224, input_stride=4, input_channel=[16, 16], last_channel=1024, head_channels=None, bn_momentum=0.1, bn_epsilon=1e-5, dropout_ratio=0.2, active_fn='nn.ReLU6', block='InvertedResidualChannels', width_mult=1.0, round_nearest=8, expand_ratio=4, kernel_sizes=[3, 5, 7], inverted_residual_setting=None, task='segmentation', align_corners=False, start_with_atomcell=False, fcn_head_for_seg=False, **kwargs): super(HighResolutionNet, self).__init__() batch_norm_kwargs = { 'momentum': bn_momentum, 'eps': bn_epsilon } self.avg_pool_size = input_size // 32 self.input_stride = input_stride self.input_channel = [_make_divisible(item * width_mult, round_nearest) for item in input_channel] self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) self.batch_norm_kwargs = batch_norm_kwargs self.active_fn = get_active_fn(active_fn) self.kernel_sizes = kernel_sizes self.expand_ratio = expand_ratio self.task = task self.align_corners = align_corners self.block = get_block_wrapper(block) self.inverted_residual_setting = inverted_residual_setting downsamples = [] if self.input_stride > 1: downsamples.append(ConvBNReLU( 3, input_channel[0], kernel_size=3, stride=2, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.active_fn)) if self.input_stride > 2: if start_with_atomcell: downsamples.append(InvertedResidual(input_channel[0], input_channel[0], 1, 1, [3], self.active_fn, self.batch_norm_kwargs)) downsamples.append(ConvBNReLU( input_channel[0], input_channel[1], kernel_size=3, stride=2, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.active_fn)) self.downsamples = nn.Sequential(*downsamples) features = [] for index in range(len(inverted_residual_setting)): in_branches = 1 if index == 0 else inverted_residual_setting[index - 1][0] in_channels = [input_channel[1]] if index == 0 else inverted_residual_setting[index - 1][-1] features.append( FuseModule( in_branches=in_branches, out_branches=inverted_residual_setting[index][0], in_channels=in_channels, out_channels=inverted_residual_setting[index][-1], block=self.block, expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.active_fn) ) features.append( ParallelModule( num_branches=inverted_residual_setting[index][0], num_blocks=inverted_residual_setting[index][1], num_channels=inverted_residual_setting[index][2], block=self.block, expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.active_fn) ) if fcn_head_for_seg: self.transform = ConvBNReLU( sum(inverted_residual_setting[-1][-1]), last_channel, kernel_size=1, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.active_fn ) else: self.transform = self.block( sum(inverted_residual_setting[-1][-1]), last_channel, expand_ratio=self.expand_ratio, kernel_sizes=self.kernel_sizes, stride=1, batch_norm_kwargs=self.batch_norm_kwargs, active_fn=self.active_fn, ) self.features = nn.Sequential(*features) self.init_weights() def _transform_inputs(self, inputs): Transform inputs for decoder. Args: inputs (list[Tensor]): List of multi-level img features. Returns: Tensor: The transformed inputs upsampled_inputs = [ resize( input=x, size=inputs[-1].shape[2:], mode='bilinear', align_corners=self.align_corners) for x in inputs ] inputs = torch.cat(upsampled_inputs, dim=1) inputs = self.transform(inputs) return inputs def init_weights(self, pretrained=None): logging.info('=> init weights from normal distribution') for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.downsamples(x) x = self.features([x]) x = self._transform_inputs(x) return x What is the purpose of the HighResolutionNet module?

answer:Based on the doc, it seems the HighResolutionNet module is designed to be the backbone network for tasks like image segmentation. Some key points: - It takes an input image, passes it through downsample layers to reduce resolution and expand channels. - The core is a series of Fuse and Parallel modules that combine multiple resolution streams in the feature hierarchy. - At the end, it transforms the multi-scale features into a single output feature map. So in summary, the purpose is to extract a rich hierarchical feature representation from an input image, by fusing different resolution streams. This feature representation can then be used for segmentation or other tasks. The goal is to get good multi-scale context that improves segmentation performance.

question:Dear John, I hope this email finds you well. I wanted to share some exciting news with you. I recently came across a rare Olmec codex that appears to contain astronomical information. As you know, the Olmec civilization preceded the Maya and Aztec, and we have limited knowledge about their astronomical understanding. I'm planning to analyze the codex in depth and compare it to what we know about later Mesoamerican calendars. I think this could be a real breakthrough for our research on the origins and development of Mesoamerican calendar systems. I was hoping to get your thoughts on this discovery and see if you'd be interested in collaborating on a paper about it. I'll be in Mexico City next month for a conference and could bring the codex with me to show you in person. Let me know what you think! Best regards, Isabel

answer:Isabel discovered a rare Olmec codex with potential astronomical information and plans to analyze it.

Released under the Mit License.

has loaded